Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(2): 405-420, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318987

RESUMO

Myocardial infarction (MI) is often complicated by left ventricular (LV) remodeling and heart failure. We evaluated the feasibility of a multimodality imaging approach to guide delivery of an imageable hydrogel and assessed LV functional changes with therapy. Yorkshire pigs underwent surgical occlusions of branches of the left anterior descending and/or circumflex artery to create an anterolateral MI. We evaluated the hemodynamic and mechanical effects of intramyocardial delivery of an imageable hydrogel in the central infarct area (Hydrogel group, n = 8) and a Control group (n = 5) early post-MI. LV and aortic pressure and ECG were measured and contrast cineCT angiography was performed at baseline, 60 min post-MI, and 90 min post-hydrogel delivery. LV hemodynamic indices, pressure-volume measures, and normalized regional and global strains were measured and compared. Both Control and Hydrogel groups demonstrated a decline in heart rate, LV pressure, stroke volume, ejection fraction, and pressure-volume loop area, and an increase in myocardial performance (Tei) index and supply/demand (S/D) ratio. After hydrogel delivery, Tei index and S/D ratio were reduced to baseline levels, diastolic and systolic functional indices either stabilized or improved, and radial strain and circumferential strain increased significantly in the MI regions (ENrr: +52.7%, ENcc: +44.1%). However, the Control group demonstrated a progressive decline in all functional indices to levels significantly below those of Hydrogel group. Thus, acute intramyocardial delivery of a novel imageable hydrogel to MI region resulted in rapid stabilization or improvement in LV hemodynamics and function.NEW & NOTEWORTHY Our study demonstrates that contrast cineCT imaging can be used to evaluate the acute effects of intramyocardial delivery of a therapeutic hydrogel to the central MI region early post MI, which resulted in a rapid stabilization of LV hemodynamics and improvement in regional and global LV function.


Assuntos
Hidrogéis , Infarto do Miocárdio , Suínos , Animais , Hidrogéis/farmacologia , Medicina de Precisão , Miocárdio , Função Ventricular Esquerda , Remodelação Ventricular/fisiologia
2.
Invest Ophthalmol Vis Sci ; 61(4): 41, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32343781

RESUMO

Purpose: To measure the ex vivo pressure-induced strain response of the human optic nerve head and analyze for variations with glaucoma diagnosis and optic nerve axon damage. Methods: The posterior sclera of 16 eyes from 8 diagnosed glaucoma donors and 10 eyes from 6 donors with no history of glaucoma were inflation tested between 5 and 45 mm Hg. The optic nerve from each donor was examined for degree of axon loss. The posterior volume of the lamina cribrosa (LC) was imaged with second harmonic generation and analyzed using volume correlation to calculate LC strains between 5 and 10 and 5 and 45 mm Hg. Results: Eye length and LC area were larger in eyes diagnosed with glaucoma (P ≤ 0.03). Nasal-temporal EXX and circumferential Eθθ strains were lower in the LC of diagnosed glaucoma eyes at 10 mm Hg (P ≤ 0.05) and 45 mm Hg (P ≤ 0.07). EXX was smaller in the LC of glaucoma eyes with <25% axon loss compared with undamaged normal eyes (P = 0.01, 45 mm Hg). In general, the strains were larger in the peripheral than central LC. The ratio of the maximum principal strain Emax in the peripheral to central LC was larger in glaucoma eyes with >25% axon loss than in glaucoma eyes with milder damage (P = 0.004, 10 mm Hg). Conclusions: The stiffness of the LC pressure-strain response was greater in diagnosed glaucoma eyes and varied with glaucomatous axon damage. Lower LC strains in glaucoma eyes with milder damage may represent baseline biomechanical behavior that contributes to axon loss, whereas greater LC strain and altered radial LC strain variation in glaucoma eyes with more severe damage may be caused by glaucoma-related remodeling.


Assuntos
Glaucoma/diagnóstico por imagem , Glaucoma/fisiopatologia , Imageamento Tridimensional , Disco Óptico/diagnóstico por imagem , Disco Óptico/patologia , Estresse Mecânico , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Técnicas In Vitro , Masculino , Valores de Referência , Esclera/diagnóstico por imagem , Esclera/patologia , Manejo de Espécimes
3.
Acta Biomater ; 106: 225-241, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044458

RESUMO

This study investigated the inflation response of the lamina cribrosa (LC) and adjacent peripapillary sclera (PPS) in post-mortem human eyes with no history of glaucoma. The posterior sclera of 13 human eyes from 7 donors was subjected to controlled pressurization between 5-45 mmHg. A laser-scanning microscope (LSM) was used to image the second harmonic generation (SHG) response of collagen and the two-photon fluorescent (TPF) response of elastin within the volume of the LC and PPS at each pressure. Image volumes were analyzed using digital volume correlation (DVC) to calculate the three-dimensional (3D) deformation field between pressures. The LC exhibited larger radial strain, Err, and maximum principal strain, Emax, (p < 0.0001) and greater posterior displacement (p=0.0007) compared to the PPS between 5-45 mmHg, but had similar average circumferential strain, Eθθ, and maximum shear strain, Γmax. The Emax and Γmax were highest near the LC-PPS interface and lowest in the nasal quadrant of both tissues. Larger LC area was associated with smaller Emax in the peripheral LC and larger Emax in the central LC (p ≤ 0.01). The Emax, Γmax, and Eθθ in the inner PPS increased with increasing strain in adjacent LC regions (p ≤ 0.001). Smaller strains in the PPS were associated with a larger difference in the posterior displacement between the PPS and central LC (p < 0.0001 for Emax and Err), indicating that a stiffer pressure-strain response of the PPS is associated with greater posterior bowing of the LC. STATEMENT OF SIGNIFICANCE: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa (LC), a connective tissue structure that supports the axons as they pass through the eye wall. It is hypothesized that strains caused by intraocular pressure may initiate this damage and that these strains are modulated by the combined deformation of the LC and adjacent peripapillary sclera (PPS). In this study we present a method to measure the pressure-induced 3D displacement and strain field in the LC and PPS simultaneously. Regional strain variation in the LC and PPS was investigated and compared and strains were analyzed for associations with age, LC area, LC strain magnitude, and LC posterior motion relative to the PPS.


Assuntos
Pressão Intraocular/fisiologia , Esclera/metabolismo , Idoso , Idoso de 80 Anos ou mais , Colágeno/metabolismo , Elastina/metabolismo , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Estresse Mecânico
4.
Acta Biomater ; 96: 385-399, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279161

RESUMO

We developed a method to measure the 3-dimensional (3D) strain field in the optic nerve head (ONH) in vivo between two intraocular pressures (IOP). Radial optical coherence tomography (OCT) scans were taken of the ONH of 5 eyes from 5 glaucoma patients before and after IOP-lowering surgery and from 5 eyes from 3 glaucoma suspect patients before and after raising IOP by wearing tight-fitting swimming goggles. Scans taken at higher and lower IOP were compared using a custom digital volume correlation (DVC) algorithm to calculate strains in the anterior lamina cribrosa (ALC), retina, and choroid. Changes in anterior lamina depth (ALD) relative to Bruch's membrane were also analyzed. Average displacement error was estimated to be subpixel and strain errors were smaller than 0.37%. Suturelysis decreased IOP by 9-20 mmHg and decreased compressive anterior-posterior strain Ezz in the ALC by 0.76% (p=0.002,n=5). Goggle-wearing increased IOP by 3-4 mmHg and produced compressive Ezz in the ALC (-0.32%,p=0.001,n=5). Greater IOP decrease was associated with greater ALD change (p=0.047,n=10) and greater strains in the ALC (Ezz:p=0.002,n=10). A deepening of ALD was associated with lower IOP and greater ALC strains (p⩽0.045,n=10). A DVC-based method to measure strains from OCT images caused by IOP changes as small as 2.3 mmHg provides preliminary evidence that ALD is shallower and ALC strains are less compressive at higher IOP and that ALD change is associated with ALC strains. STATEMENT OF SIGNIFICANCE: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa, a connective tissue structure in the optic nerve head that supports the axons as they pass through the eye wall. It is hypothesized that strains caused by intraocular pressure (IOP) may initiate this damage, but few studies have measured the strain response to pressure of the optic nerve head in patients. We present a method to measure the 3D displacement and strain field in the optic nerve head caused by IOP alteration in glaucoma patients using clinically available images. We used this method to measure strain within the optic nerve head from IOP changes caused by glaucoma surgery and wearing tight-fitting swimming goggles.


Assuntos
Lâmina Basilar da Corioide/diagnóstico por imagem , Glaucoma/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Tomografia de Coerência Óptica , Idoso , Idoso de 80 Anos ou mais , Lâmina Basilar da Corioide/fisiopatologia , Feminino , Glaucoma/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Nervo Óptico/fisiopatologia
5.
Invest Ophthalmol Vis Sci ; 60(7): 2406-2422, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31157833

RESUMO

Purpose: The purpose of this study was to measure the 2D collagen network structure of the human lamina cribrosa (LC), analyze for the correlations with age, region, and LC size, as well as the correlations with pressure-induced strains. Methods: The posterior scleral cups of 10 enucleated human eyes with no known ocular disease were subjected to ex vivo inflation testing from 5 to 45 mm Hg. The optic nerve head was imaged by using second harmonic generation imaging (SHG) to identify the LC collagen structure at both pressures. Displacements and strains were calculated by using digital volume correlation of the SHG volumes. Nine structural features were measured by using a custom Matlab image analysis program, including the pore area fraction, node density, and beam connectivity, tortuosity, and anisotropy. Results: All strain measures increased significantly with higher pore area fraction, and all but the radial-circumferential shear strain (Erθ) decreased with higher node density. The maximum principal strain (Emax) and maximum shear strain (Γmax) also increased with larger beam aspect ratio and tortuosity, respectively, and decreased with higher connectivity. The peripheral regions had lower node density and connectivity, and higher pore area fraction, tortuosity, and strains (except for Erθ) than the central regions. The peripheral nasal region had the lowest Emax, Γmax, radial strain, and pore area fraction. Conclusions: Features of LC beam network microstructure that are indicative of greater collagen density and connectivity are associated with lower pressure-induced LC strain, potentially contributing to resistance to glaucomatous damage.


Assuntos
Módulo de Elasticidade/fisiologia , Colágenos Fibrilares/metabolismo , Pressão Intraocular/fisiologia , Disco Óptico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Anisotropia , Fenômenos Biomecânicos , Enucleação Ocular , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Disco Óptico/diagnóstico por imagem , Estresse Mecânico , Doadores de Tecidos
6.
J Biophotonics ; 12(5): e201800376, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30578592

RESUMO

Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two-dimensional discrete Fourier transform (DFT)-based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid-stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide-angle X-ray scattering and application of the presented method to other fibrous tissues.


Assuntos
Colágeno/metabolismo , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Disco Óptico/diagnóstico por imagem , Citoesqueleto de Actina/metabolismo , Animais , Artefatos , Humanos , Disco Óptico/citologia , Ratos , Cauda , Tendões/diagnóstico por imagem
7.
Invest Ophthalmol Vis Sci ; 59(12): 5157-5166, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30372742

RESUMO

Purpose: The purpose of this study was to measure the full-field deformation response to IOP change in the peripapillary sclera (PPS) and astrocytic lamina cribrosa (ALC) of young and old mouse eyes ex vivo. Methods: Thirty-eight transgenic reporter mice with green fluorescent protein-expressing astrocytes were studied at 2 to 4 months and 13 to 15 months old. The ALC and PPS of the explant eyes were imaged using laser scanning microscopy under controlled inflation from 10 to 30 mm Hg. Strains were estimated for the ALC and PPS from imaged volumes using digital volume correlation. Results: ALC strains were significantly greater than zero nasal-temporally for both age groups (mean = 4.3% and 4.0%; each P ≤ 0.004) and significantly greater than zero in the inferior-superior direction for younger mice (P = 0.0004). Younger mice had larger ALC inferior-superior strains than older mice (P = 0.002). The ALC area and perimeter enlarged with inflation in both age groups, with a greater increase in younger than in older mice (all P ≤ 0.004). The ALC nasal-temporal diameter change was greater than inferior-superiorly, and younger mice had greater enlargement nasal-temporally than older. PPS maximum shear strain was greater in the older mice (P = 0.002). The axial lengths of older mice were 14% longer and the PPS was 16% thinner than younger mice (both P = 0.0003). Conclusions: The behavior of the ALC in younger mice with inflation exhibited greater strains and enlargement of ALC area than older mice. Some strain measures in the PPS were greater in older mice, likely related to their longer axial length and thinner PPS.


Assuntos
Envelhecimento/fisiologia , Astrócitos/fisiologia , Disco Óptico/fisiopatologia , Esclera/fisiologia , Animais , Comprimento Axial do Olho/patologia , Fenômenos Biomecânicos , Proteínas de Fluorescência Verde/metabolismo , Pressão Intraocular/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Animais
8.
Invest Ophthalmol Vis Sci ; 59(7): 3144-3154, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025126

RESUMO

Purpose: In this study, we measured the effect of the removal of sulfated glycosaminoglycans (sGAGs) on the pressure-induced strains of the human lamina cribrosa (LC). Methods: We applied an ex vivo inflation method to measure the three-dimensional (3D) deformation response of six human LCs to pressure, before and after the degradation of chondroitin and dermatan sulfates. The experiment used a laser-scanning microscope (LSM) to acquire the second harmonic generation (SHG) signal of the collagen structure in the LC. Digital volume correlation (DVC) was used to calculate the deformation in the LC after a change in pressure from 5 to 45 mm Hg. Results: The average strains between 5 and 45 mm Hg in the LC decreased significantly after sGAG degradation (P ≤ 0.03), with the greatest change occurring in regions of previously high strain (P ≤ 0.003) and the peripheral regions of the LC (P ≤ 0.02). The stiffening effect was greater in the LC of middle-aged (42-49 years) donors compared with those of older (64-88 years) donors (P < 0.0001). Conclusions: The LC experienced less strain at the same pressures after most sGAGs were removed. These results suggest that the natural decrease in sGAGs within the LC with age may contribute to the stiffer inflation response of older LC to IOP. Likewise, the increase in the amount of sGAGs observed in the LC of glaucomatous eyes, may contribute to a more compliant LC, which may affect the susceptibility and progression of axon damage.


Assuntos
Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Glicosaminoglicanos/fisiologia , Disco Óptico/fisiopatologia , Esclera/metabolismo , Estresse Mecânico , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Colágeno/metabolismo , Feminino , Humanos , Imageamento Tridimensional , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Pressão
9.
Invest Ophthalmol Vis Sci ; 58(2): 721-733, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146237

RESUMO

Purpose: To develop an ex vivo explant system using multiphoton microscopy and digital volume correlation to measure the full-field deformation response to intraocular pressure (IOP) change in the peripapillary sclera (PPS) and in the optic nerve head (ONH) astrocytic structure. Methods: Green fluorescent protein (GFP)-glutamate transporter-GLT1 (GLT1/GFP) mouse eyes were explanted and imaged with a laser-scanning microscope under controlled inflation. Images were analyzed for regional strains and changes in astrocytic lamina and PPS shape. Astrocyte volume fraction in seven control GLT1/GFP mice was measured. The level of fluorescence of GFP fluorescent astrocytes was compared with glial fibrillary acidic protein (GFAP) labeled astrocytes using immunohistochemistry. Results: The ONH astrocytic structure remained stable during 3 hours in explants. Control strain-globally, in the central one-half or two-thirds of the astrocytic lamina-was significantly greater in the nasal-temporal direction than in the inferior-superior or anterior-posterior directions (each P≤ 0.03, mixed models). The PPS opening (perimeter) in normal eye explants also became wider nasal-temporally than superior-inferiorly during inflation from 10 to 30 mm Hg (P = 0.0005). After 1 to 3 days of chronic IOP elevation, PPS area was larger than in control eyes (P = 0.035), perimeter elongation was 37% less than controls, and global nasal-temporal strain was significantly less than controls (P = 0.007). Astrocyte orientation was altered by chronic IOP elevation, with processes redirected toward the longitudinal axis of the optic nerve. Conclusions: The explant inflation test measures the strain response of the mouse ONH to applied IOP. Initial studies indicate regional differences in response to both acute and chronic IOP elevation within the ONH region.


Assuntos
Astrócitos/fisiologia , Pressão Intraocular/fisiologia , Hipertensão Ocular/fisiopatologia , Disco Óptico/fisiopatologia , Doenças do Nervo Óptico/fisiopatologia , Esclera/fisiopatologia , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Disco Óptico/citologia
10.
Acta Biomater ; 53: 123-139, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108378

RESUMO

The objective of this study was to measure the pressure-induced deformation response of the human lamina cribrosa (LC) and analyze for variations with age and anatomical region. The posterior scleral cup of 8 eyes from 6 human donors was mounted onto a custom inflation chamber. A laser-scanning microscope was used for second harmonic generation (SHG) imaging of the collagen structure in the posterior volume of the LC at pressures from 5mmHg to 45mmHg. The SHG volumes were analyzed by the Fast-Fourier Iterative Digital Volume Correlation (DVC) algorithm for the three dimensional (3D) displacement field. The components of the Green-Lagrange strain tensor and the in-plane principal and maximum shear strains were evaluated from the DVC displacement field for the central and peripheral regions of the LC and the nasal, temporal, inferior, and superior quadrants surrounding the central retinal artery and vein. Among the major findings were that older age was associated with lower strains, the maximum shear strain was larger in the peripheral than central region, and the maximum principal strain was lower in the nasal quadrant. The elliptical shape of the LC was also predictive of the biaxial strain ratio. Age-related and structure-related variations in the pressure-induced strains of the LC may contribute to the susceptibility and severity of optic nerve damage in glaucoma, and regional variations may explain the progression of axonal damage and tissue remodeling observed in the LC in glaucoma. STATEMENT OF SIGNIFICANCE: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa (LC), the connective tissue structure that supports the axons as they leave the eye. Mechanical characterization of the LC is challenging because of the complex 3D shape and inaccessibility of the tissue. We present a new method using digital volume correlation to map the 3D displacement and strain fields in the LC under inflation. We report for the first time significant regional variations in the strains that are consistent with the pattern of optic nerve damage in early glaucoma. Thus regional strain variations may be predictive of the progression of axonal damage in glaucoma.


Assuntos
Esclera/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Envelhecimento/fisiologia , Fenômenos Biomecânicos , Progressão da Doença , Glaucoma/etiologia , Glaucoma/patologia , Glaucoma/fisiopatologia , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Pressão Intraocular/fisiologia , Pessoa de Meia-Idade , Esclera/anatomia & histologia , Microscopia de Geração do Segundo Harmônico , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...